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Abstract

Positional encodings are employed to capture the high
frequency information of the encoded signals in implicit
neural representation (INR). In this paper, we propose a
novel positional encoding method which improves the re-
construction quality of the INR. The proposed embedding
method is more advantageous for the compact data repre-
sentation because it has a greater number of frequency ba-
sis than the existing methods. Our experiments shows that
the proposed method achieves significant gain in the rate-
distortion performance without introducing any additional
complexity in the compression task and higher reconstruc-
tion quality in novel view synthesis.

1. Introduction

Implicit neural representation (INR) or neural radiance
field (NRF) has gained popularity recently, due to its ca-
pability to represents different kinds of multi-dimensional
signals [11]. INR represents a signal by over-fitting a con-
tinuous function (neural network) which takes as input the
coordinates of the signal and outputs the pixel color val-
ues [16, 15], in the case of signal regression. By over-
fitting, INR learns to compactly represent the signals in
the lower-dimensional space by discarding irrelevant infor-
mation when the number of parameters is lower than the
length of the underlying signal. The representation capac-
ity of the INR depends on the number of parameters used
to approximate the signals. Thus, the approximation qual-
ity can be adjusted by changing the architecture of the INR
network. INR can be used for compact data representa-
tion [9, 3], image and video compression, since storing an
image/video amounts to storing the weights for the neural
network [8, 12, 6, 7, 13]. Reconstructing the image or sig-
nal then amounts to extracting the weights and evaluating
the neural network for all coordinates.

Directly using a multi-layer perceptron (MLP) results in

an overly smooth reconstruction due to the spectral bias of
the regular MLP. Tancik et al. [16] showed MLP with ReLU
activation functions are not suitable to encode signals with
high frequency content. To overcome the spectral bias, Sitz-
mann et al. [15] replaced ReLU with sine activation func-
tion whereas Tancik et al. [16] used positional encoding
with random Fourier features followed by MLP with ReLU
activation function.

Positional encoding using random Fourier features maps
the input coordinates to a high dimensional embedding as
γ(x) : Rd → R2D using D dimensional random basis.
The embedding dimension as well as the number of random
Fourier basis has a direct impact on the reconstruction qual-
ity. However, in Tancik et al. [16], the number of random
Fourier basis used is only half the size (D) of the embed-
ding dimension (2D). Thus, the existing Fourier embedding
used in the INR is limited in covering the frequency spec-
trum and also in its reconstruction quality, especially when
the embedding dimension is small.

In this paper, we propose an alternative positional em-
bedding method for INR to improve reconstruction quality.
Our proposed embedding method contains the same number
of basis vectors as the embedding dimension. Therefore,
it covers the frequency spectrum better. Additionally, our
proposed method does not increase the encoding or decod-
ing complexity of the signals nor the size of the bit-stream
in compression tasks. We evaluated our proposed method
on image reconstruction task, image compression and novel
view synthesis and the results showed that our proposed
method has significant gains without any additional increase
in bit-stream size and complexity.

The rest of the paper is organized as follows: Section 2
introduces the implicit neural representation and existing
Fourier feature mapping, section 3 presents our proposed
method, section 4 reports on our experimental results, and
conclusion is derived in section 5.



2. Implicit Neural Representation
Let I ∈ RW×H×3 be a color image, x, y ∈ R be the

pixel coordinates in the normalized range [−1, 1], I(x, y)
denotes the pixel values (RGB) at the coordinates x, y and
γ(x, y) a positional encoding of the coordinates. The INR
is a neural network fθ, parameterized by the weights θ such
that it maps the given coordinates to the pixel intensity val-
ues (RGB). In other words, ∀x, y, fθ(γ(x, y)) ∼ I(x, y).
Without loss of generality, it can be extended to any multi-
dimensional signals.

The weights θ of the INR are estimated by over-fitting
(minimizing) the following loss function

θ∗ = argmin
θ

L(x, y,θ) =
1

N

∑
x,y

d(I(x, y), fθ(γ(x, y))),

(1)
where the sum is over all the pixels in the image (N =
W × H), W,H is width and height of the image, d is any
distortion metric which measures the discrepancy between
the predicted (reconstructed) pixels by fθ and the actual
pixel values of the image I . The metric d is preferably a
differentiable distortion measure, such as mean squared er-
ror or perceptual metric such as LPIPS. In this paper, mean
squared error (MSE) is used as the distortion metric. Once
the equation (1) is optimized, at the inference image can
be reconstructed by evaluating fθ∗ over all the pixel co-
ordinates.

Data representation: The optimized θ∗ can be used as
the data representation for the down-stream tasks. Com-
pressing an image I is equivalent to encoding the values
of the weights θ∗ in the bit-stream. For compression it is
not possible to choose large neural network for better re-
construction quality as it would increase bit-length. Thus,
the number of weights is constrained at the expense of the
distortion. For each image I , there is one specific INR fθ
which is overfitted to the given image I. This is different
from the end-to-end compression method [14, 1, 2]. To
generate bit-streams of different sizes, INR is trained with
different number of hidden layers and nodes. Figure 1 illus-
trates an implicit neural network (INR) based image com-
pression system.

Positional Encoding with Fourier features: The
Fourier feature mapping is based on the Bochner’s theorem
to approximate a shift-invariant kernels. Tancik et al. [16]
used random Fourier feature (RFF) mapping γ : Rd →
R2D to the input coordinates before feeding them to MLP
with ReLU activation functions. The Fourier feature map-
ping of the coordinate v = (x, y) is defined as follows:

γ (v) ∈ R2D = [cos
(
2πwT

1 v
)
, sin

(
2πwT

1 v
)
, . . . ,

cos
(
2πwT

Dv
)
, sin

(
2πwT

Dv
)
]T , (2)

where the coefficients wi are the Fourier basis frequencies

Figure 1. Implicit neural representation (INR) with Fourier feature
mapping. x, y ∈ R is the normalized input coordinates, γ(x, y) is
the Fourier feature mapping, θ′s are weights of the MLP. For the
compression, θ’s are encoded in the bit-stream and transmitted to
the decoder side.

when the mapping is seen as a Fourier approximation of a
shift-invariant kernel function. The basis vectors wi’s are
randomly sampled from the Gaussian distribution with ap-
propriate band-width σ, i.e wi ∼ N(0, σ), i = 1 . . . D.
This positional encoding is used in the existing INR and
NeRF literature.

For the mapping dimension of 2D, only D number of
Fourier basis are sampled. One could note that the number
of sampled frequencies is half the number of the mapping
size. This could be an issue when the mapping size is small,
which is the case in compression tasks.

3. Proposed method

To increase the number of random Fourier basis in the
Fourier feature mapping, here we propose an alternative
positional encoding which is also based on the Bochner’s
theorem, and we label our proposed method as RFF-cosine
mapping. Let ϕ : Rd → R2D be the mapping of the our
proposed RFF-cosine mapping, which maps the input coor-
dinates to the RFF-cosine feature mapping as

ϕ (v) = [
√
2 cos

(
2πwT

1 v + b1
)
,
√
2 cos

(
2πwT

2 v + b2
)
,

. . . ,
√
2 cos

(
2πwT

2Dv + b2D
)
]T , (3)

where w′
is, i = 1, . . . , 2D are randomly sampled from the

Gaussian distribution with the bandwidth parameter (σ),
and bias vectors b′is are randomly sampled from the uni-
form distribution in [0, 2π]. The advantage of using our
proposed method is directly evident by comparing eqn (3)
and (2), where our proposed RFF-cosine feature mapping
has more (twice) number Fourier basis frequencies with the
same mapping size as compared to eqn (2). This allows to
encode high frequency information in the signals better than
the existing positional encoding method. By replacing our
proposed RFF-cosine mapping in eqn (1), the loss function



Figure 2. Kernel approximation error ∥K−K̂∥
∥K∥ of the 1D sine

wave function (3sin(t) + U(0, 1), t ∈ [0, 8π]) using our pro-
posed mapping and existing mapping. K is the Gaussian RBF
kernel matrix (with std dev. σ computed using 5th percentile of
pairwise distances), and K̂ is the approximated kernel matrix us-
ing either our mapping (3) or existing mapping (2). Lower approx-
imation error is better.

to be minimized is as follows

θ∗ = argmin
θ

L(x, y,θ) =
1

N

∑
x,y

d(I(x, y), fθ(ϕ(x, y))).

(4)
For the signal compression, as the Fourier embeddings are

generated from randomly sampled frequency basis, it is not
necessary to encode the frequency basis in the bitstream,
we only need to write the random seed used to sample fre-
quency basis in the bitstream. Our proposed method needs
only to write one additional random seed used for the sam-
pling from the uniform distribution, if different seeds are
used. Thus, our proposed positional encoding increases nei-
ther the size of the bitstream nor the complexity of encoding
or decoding the signals.

Illustration: The benefit of our proposed feature map-
ping can be analyzed through the lens of neural tangent ker-
nel (NTK) and kernel approximation. Due to the greater
number of frequency basis, the eigenvalue decay of the
NTK of our proposed feature mapping might be slower than
the existing Fourier feature mapping in (2), thus our method
can encode more frequency content of the signal in the low
mapping size. However, in the higher mapping size the
eqn (2) might be able to cover the entire frequency spectrum
of the signal, thus performs equally similar to our proposed
mapping or better. This can be validated with the toy ex-
periment to approximate the Gaussian kernel using both the
feature mapping. Figure 2 reports the kernel approximation
error of the 1D sine wave function (with 1000 samples),
and show that our proposed feature mapping has smaller
approximation error in the lower the mapping size, and as
the mapping size increases the existing mapping has better

approximation error. Thus, validating our proposal to use
our proposed feature mapping in the tasks where the large
mapping size or large neural networks cannot be used.

4. Experimental Results
We evaluated our proposed RFF-cosine mapping method

on different sets of tasks: image compression, and novel
view synthesis. Further, we evaluated the impact of the
mapping size, and showed the superiority of our proposed
method in low mapping size settings.

Image compression: We choose a subset (images 5
to 14) of the Kodak dataset [10]. The RGB PSNR
and bits per pixel (BPP) are used as the distortion
and rate measure. We use the MLP architecture with
varying number of hidden layers and hidden nodes
{(5, 20), (5, 30), (10, 30), (10, 40)}, for different bit-rates
as in the [8]. The loss function is minimized with Adam
optimizer using learning rate 2e − 4 for 50K iterations.
To choose bandwidth parameter σ for the Fourier mapping,
we performed experiments using few images with {1, 5, 10}
and we observed that σ = 1 gives optimal performance for
the compression task. For the compression, we encode the
weights and bias in the half-precision as in [8].

The rate-distortion performance of our proposed embed-
ding method and the existing one is reported in Table 1 with
different network architectures and mapping size. The re-
sults reveal that our proposed mapping outperforms the ex-
isting one across different bit-rates and with different map-
ping size. More specifically, our method has a significantly
better PSNR than the existing method in the low mapping
size (more than 2dB PSNR in average) though the mapping
size is the same, which proves the advantage of having more
frequency basis.

Further, to quantify the bitrate gain in % we computed
Bjontegard BD rate gain [5] and it is presented in figure 3.
It demonstrates that our proposed embedding has about
98% BD-rate gain at the low mapping size and about 10%
BD-rate gain at the higher mapping size. These gains are
very significant in the compression literature, and they are
achieved without any additional (encoding and decoding)
complexity and increase in the size of bit-stream.

Novel view synthesis: Finally, we evaluate our pro-
posed embedding method on the novel view synthesis. For
this, we applied our proposed method on the recent NeRF
method named Nope-NeRF [4], and compared with the ex-
isting Fourier features. We conducted experiments on the
Ignatius sequence from tanks dataset, and after training we
used 8 scenes to evaluate novel view synthesis quality. We
evaluated the quality of the synthesis using PSNR, Struc-
tural Similarity Index Measure (SSIM) and Learned Percep-
tual Image Patch Similarity (LPIPS). We followed a similar
experimental protocol to [4]. For the Fourier feature map-
ping, we conducted experiments with bandwidth parameter



Table 1. Rate distortion (RD) performance of our proposed embedding method and the existing one for different bit-rates with different
mapping sizes evaluated on the subset (images 5 to 14) of Kodak dataset . Q1-Q4 are different MLP architectures. Rates are measured in
bits per pixel (bpp), and distortion in PSNR. The best results are in bold.

Mapping size Method Q1 Q2 Q3 Q4

8

BPP 0.0782 0.1661 0.3111 0.6202

PSNR Existing method 18.26 18.70 19.04 19.38
Ours 20.33 20.83 21.37 22.01

16

BPP 0.0848 0.1759 0.3202 0.633

PSNR Existing method 21.67 22.48 22.69 23.51
Ours 22.15 22.79 22.85 23.50

32

BPP 0.0977 0.1954 0.3385 0.6593

PSNR Existing method 22.42 22.94 23.16 23.82
Ours 22.56 23.11 23.38 23.95

64

BPP 0.1238 0.2345 0.3750 0.7114

PSNR Existing method 22.96 23.40 23.75 24.19
Ours 23.14 23.45 23.79 24.33

Figure 3. BD rate gain (in -%) of our proposed method with respect
to the existing method over various mapping size. The exact gains
are displayed in text.

{1, 5, 10} with mapping size of 60 and we observed that
σ = 1 gave the best results.

Table 2 reports the reconstruction quality of the Nope-
Nerf with our proposed positional encoding and existing en-
coding method, and showed that with our proposed method
Nope-Nerf achieved best results.

5. Conclusion

In this paper, we proposed an improved positional en-
coding for implicit neural representation. The proposed em-
bedding method has a greater number of Fourier frequency
basis than the existing Fourier feature mapping used in the

Table 2. Reconstruction quality of the Nope-Nerf method for novel
view synthesis with our proposed positional encoding and existing
encoding. The best results are in bold.

Method PSNR (↑) SSIM (↑) LPIPS (↓)

Nope-NeRF+(2) 23.79 0.60 0.50
Nope-NeRF+Ours 23.91 0.61 0.49

INR literature. The superiority of our method is evaluated
on image compression and novel view synthesis tasks, and
showed that it offered significant BD rate gain in compres-
sion, and better reconstruction quality in view synthesis.
In the future work, we will explore the quantization aware
training [7] and entropic coding to further improve the com-
pression efficiency.
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